PILOT LEARNING CALCULUS II ENGINEERING PROBLEM-SET 7

FALL 2019
(1) Sketch the region in the plane consisting of points whose polar coordinates satisfy the given conditions.
(a) $0 \leq r, \frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$
(b) $2<r<3, \frac{5 \pi}{3} \leq \theta \leq \frac{7 \pi}{3}$
(2) Find a polar equation for the curve represented by the given Cartesian equation.
(a) $y=2$
(b) $x y=4$
(c) $x^{2}+y^{2}=2 c x$
(3) Find the area of the region enclosed by one loop of the curve.
(a) $r=4 \cos 3 \theta$
(b) $r^{2}=\sin 2 \theta$
(4) Find the area of the region that lies inside the first curve and outside the second curve
(a) $r^{2}=8 \cos 2 \theta ; r=2$
(b) $r=3 \cos \theta, r=1+\cos \theta$
(5) Find the area of the region that lies inside both curves.
(a) $r^{2}=\sin 2 \theta ; r=\cos 2 \theta$
(b) $r=1+\cos \theta ; r=1-\cos \theta$
(6) Find the exact length of the polar curve.
(a) $r=\cos \theta$
(b) $r=5^{\theta} ; 0 \leq \theta \leq 2 \pi$
(c) $r=\cos ^{2}\left(\frac{\theta}{2}\right)$

